Supplementary materials for

Fabrication of hierarchical bioinspired superstructures bearing different charges and tunable ability to promote protein crystallization

Hao Liu, a Xiangmin Ding, a Min Lin, a Ronald N. Zuckermann b and Jing Sun a

a State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China

b Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
Figure S1-S2. 1H NMR spectra of all the diblock copolymers..1

Figure S3. GPC chromatograms of all diblock copolymers. ...3

Figure S4. DSC results of the diblock copolymers..3

Figure S5. AFM images of PNAG$_{16}$-g-NH$_2$-b-PNOG$_{72}$ incubated at room temperature for different time in 1% (v/v) chloroform in methanol at a concentration of 0.5 mg/mL.......................4

Figure S6. Plots of the growth kinetics of the assemblies...5

Figure S7. AFM images of the L_n growth in a living manner...6

Figure S8. Living crystallization-driven self-assembly behavior of star-like superstructures.7

Figure S9. Influence of DP of PNAG-g-COOH-b-PNOG on L_n...7

Figure S10. Influence of DP of PNAG-g-NH$_2$-b-PNOG on L_n..8

Figure S11. Influence of volume ratio of methanol to chloroform on L_n of star-like superstructures. ..8

Figure S12. Influence of the polymer concentration on L_n of star-like superstructures.9

Figure S13. Plots of the height of core versus the number of branches. ..9

Figure S14-S15. Influence of temperature on L_n of star-like superstructures......................................10

Figure S16. The star-like assemblies of (a) PNAG$_{16}$-g-NH$_2$-b-PNOG$_{72}$ and (b) PNAG$_{16}$-g-COOH-b-PNOG$_{72}$ upon re-dispersion in water. ..11

Figure S17. (a) The star-like assemblies and (b) the nanosheets of PEG-b-PNOG$_{74}$ upon re-dispersion in water. ...11
Figure S18. Photographs of the lysozyme crystals crystallized at 4 °C for 48 h.12

Figure S19. AFM images of (a) PEG-b-PNOG$_{74}$, (b) PNAG$_{16}$-g-COOH-b-PNOG$_{72}$ and (c) PNAG$_{16}$-g-NH$_2$-b-PNOG$_{72}$ upon dispersion in water...12

Figure S20. FTIR spectra of lysozyme crystals grown at 4 °C for 48 h...13

Figure S21. WAXS patterns of lysozyme crystals grown at 4 °C for 48 h.......................................14

Figure S22. CD spectra of the lysozyme solution...15

Figure S23. Photographs of the thaumatin crystals crystallized at 10 °C for 48 h.........................16

Figure S24. Crystal percentage over a period of 3 days at thaumatin concentration of 25 mg/ml at 4 °C. ...17

Figure S25. Crystallization success rate of the thaumatin...18

Figure S26. FTIR spectra of the thaumatin crystals grown at 10 °C for 48 h.................................18

Figure S27 CD spectra of the thaumatin solution..19

Figure S28. Photographs of the concanavalin A crystals crystallized at 18 °C for 72 h..............20

Figure S29. Photographs of the bovine insulin crystals crystallized at 18 °C for 72 h..............20

Figure S30. UV spectra of (a) the concanavalin A and (b) the bovine insulin solution.................21

Figure S31. (a) Concanavalin A crystal percentage over a period of 2 days and (b) the bovine insulin crystal percentage over a period of 3 days. ...21

Figure S32. Crystallization success rate of the concanavalin A..22

Figure S33. Crystallization success rate of the bovine insulin...22

Figure S34. FTIR spectra of (a) the concanavalin A crystals grown at 18 °C for 48 h and (b) the bovine insulin crystals grown at 18 °C for 72 h...23

Figure S35. CD spectra of (a) the concanavalin (b) the bovine insulin solution..........................24
Figure S1. 1H NMR spectra of (a) PNAG$_{16-b}$-PNOG$_{72}$, and (b) PNAG$_{13-b}$-PNOG$_{40}$ in CD$_2$Cl$_2$ (* indicates CD$_2$Cl$_2$).
Figure S2. 1H NMR spectra of (a) PNAG$_{16}$-g-COOH-b-PNOG$_{72}$, and (b) PNAG$_{16}$-g-NH$_2$-b-PNOG$_{72}$ in CD$_2$Cl$_2$ (* indicates CD$_2$Cl$_2$).
Figure S3. GPC chromatograms of all diblock copolymers.

Figure S4. DSC results of the diblock copolymers.
Figure S5. AFM images of PNAG\textsubscript{16-g-NH\textsubscript{2-b-PNOG\textsubscript{72}} incubated at room temperature for (a) 5 min, (b) 1 h, (c) 3 h, (d) 6 h, (e) 12 h and (f) 24 h in 1\% (v/v) chloroform in methanol at a concentration of 0.5 mg/mL.
Figure S6. (a) Plots of conversion rate (α), (b) plots of polymer concentration ([c]), (c) plots of polymer relative concentration ([c]/[c]total) and (d) plots of linear fitting of Avrami-Erofeev function, $G(\alpha) = [-\ln(1-\alpha)]^{2/5}$ of the kinetic data. The red line represents the PNAG$_{16}$-g-NH$_2$-b-PNOG$_{72}$ incubated at room temperature in 1% (v/v) chloroform in methanol at a concentration of 0.5 mg/mL. The black line represents the PNAG$_{16}$-g-COOH-b-PNOG$_{72}$ incubated at room temperature in 1% (v/v) chloroform in methanol at a concentration of 0.5 mg/mL.
Figure S7. AFM images of (a) PNAG$_{16}$-g-COOH-b-PNOG$_{72}$ incubated at 25 °C for 24 h in 1% (v/v) chloroform in methanol at a concentration of 0.5 mg/mL, with successive addition of (a) 0.2 mg and (b) 0.3 mg.
Figure S8. Living crystallization-driven self-assembly behavior of star-like superstructures. AFM images of (a) PNAG₁₆-g-NH₂-b-PNOG₇₂ incubated at 25 °C for 24 h in 1% (v/v) chloroform in methanol at a concentration of 0.5 mg/mL, with successive addition of (b) 0.1 mg, (c) 0.2 mg, (d) 0.3 mg, and (e) 0.4 mg. (f) Plots of L_n versus the total weight of samples added.
Figure S9. Influence of DP of PNAG-g-COOH-b-PNOG on L_n. AFM images of (a) PNAG$_{16}$-g-COOH-b-PNOG$_{72}$ and (b) PNAG$_{13}$-g-COOH-b-PNOG$_{40}$ in 1 % (v/v) chloroform in methanol incubated at 25 °C.

![AFM images of PNAG-g-COOH-b-PNOG](image1)

Figure S10. Influence of DP of PNAG-g-NH$_2$-b-PNOG on L_n. AFM images of (a) PNAG$_{16}$-g-NH$_2$-b-PNOG$_{72}$ and (b) PNAG$_{13}$-g-NH$_2$-b-PNOG$_{40}$ in 1 % (v/v) chloroform in methanol incubated at 25 °C.

![AFM images of PNAG-g-NH$_2$-b-PNOG](image2)
Figure S11. Influence of volume ratio of methanol to chloroform on L_n of star-like superstructures. AFM images of PNAG$_{16}$-g-COOH-b-PNOG$_{72}$ in (a) 10% (v/v), (b) 2% (v/v) and (c) 5% (v/v) chloroform in methanol incubated at 25 °C for 24 h at a concentration of 0.5 mg/mL.
Figure S12. Influence of the polymer concentration on L_n of star-like superstructures. AFM images of PNAG$_{16}$-g-COOH-b-PNOG$_{72}$ in 1% (v/v) chloroform in methanol incubated at 25 °C for 24 h at a concentration of (a) 0.1 mg/mL and (b) 3 mg/mL. AFM images of PNAG$_{16}$-g-NH$_2$-b-PNOG$_{72}$ in 1% (v/v) chloroform in methanol incubated at 25 °C for 24 h at a concentration of (c) 0.1 mg/mL and (d) 3 mg/mL.

Figure S13. Plots of the height of core versus the number of branches. The red line represents the plot of the height of core versus the number of branches of PNAG$_{16}$-g-NH$_2$-b-PNOG$_{72}$ assemblies. The black line represents the plot of the height of core versus the number of branches of PNAG$_{16}$-g-COOH-b-PNOG$_{72}$ assemblies.
Figure S14. Influence of temperature on L_n of star-like superstructures. AFM images of PNAG$_{16}$-g-COOH- b-PNOG$_{72}$ in 1 % (v/v) chloroform in methanol incubated at (a) -5 °C, and (b) 4 °C for 24 h at a concentration of 0.5 mg/mL, respectively.
Figure S15. Influence of temperature on L_n of star-like superstructures. AFM images of PNAG$_{16}$-g-NH$_2$-b-PNOG$_{72}$ in 1% (v/v) chloroform in methanol incubated at (a) -5 °C and (b) 4 °C for 24 h at a concentration of 0.5 mg/mL, respectively.

![AFM images of PNAG$_{16}$-g-NH$_2$-b-PNOG$_{72}$](image)

Figure S16. The star-like assemblies of (a) PNAG$_{16}$-g-NH$_2$-b-PNOG$_{72}$ and (b) PNAG$_{16}$-g-COOH-b-PNOG$_{72}$ upon re-dispersion in water.

![AFM images of star-like assemblies](image)
Figure S17. (a) The star-like assemblies and (b) the nanosheets of PEG-\(b\)-PNOG\(_{74}\) upon re-dispersion in water.

Figure S18. Photographs of the lysozyme crystals crystallized at 4 °C for 48 h in the presence of the horsehair ((a)-(b)) and the nanodiamond ((c)-(d)).
Figure S19. AFM images of (a) PEG-b-PNOG$_{74}$, (b) PNAG$_{16}$-g-COOH-b-PNOG$_{72}$ and (c) PNAG$_{16}$-g-NH$_2$-b-PNOG$_{72}$ upon dispersion in water.

Figure S20. FTIR spectra of lysozyme crystals grown at 4 °C for 48 h. The black line represents the sample without additives. The blue line and the brown line represent the samples in the presence of PNAG-g-COOH-b-PNOG and PNAG-g-NH$_2$-b-PNOG, respectively. The red line and the green line represent the samples in the presence of the star-like assemblies and the nanosheets from PEG-b-PNOG.
Figure S21. WAXS patterns of lysozyme crystals grown at 4 °C for 48 h. The black line represents the sample without additives. The blue line and the brown line represent the samples in the presence of PNAG-g-COOH-b-PNOG and PNAG-g-NH$_2$-b-PNOG, respectively. The red line and the green line represent the samples in the presence of the star-like assemblies and the nanosheets from PEG-b-PNOG. The pink line represents the background.
Figure S22. CD spectra of the lysozyme solution. The black line represents the sample without additives. The blue line and the brown line represent the samples in the presence of PNAG-g-COOH-b-PNOG and PNAG-g-NH$_2$-b-PNOG, respectively. The red line and the green line represent the samples in the presence of the star-like assemblies and the nanosheets from PEG-b-PNOG.
Figure S23. Photographs of the thaumatin crystals crystallized at 10 °C for 48 h in the absence ((a)-(b)) and presence of ((c)-(d)) 0.5 mg/mL PNAG-\text{-}g\text{-}COOH\text{-}\text{b}\text{-}PNOG and ((e)-(f)) 0.5 mg/mL PNAG-\text{-}g\text{-}NH_{2}\text{-}\text{b}\text{-}PNOG, respectively.
Figure S24. Crystal percentage over a period of 3 days at thaumatin concentration of 25 mg/ml at 4 °C. The black line represents the sample without additives. The red line and the blue line represent the samples in the presence of PNAG-\(g\)-COOH-\(b\)-PNOG and PNAG-\(g\)-NH\(_2\)-\(b\)-PNOG, respectively.
Figure S25. Crystallization success rate of the thaumatin with (a) PNAG-\textit{g}-NH\textsubscript{2}-\textit{b}-PNOG and (b) PNAG-\textit{g}-COOH-\textit{b}-PNOG with different concentrations at 10 °C versus the incubation time.

Figure S26. FTIR spectra of the thaumatin crystals grown at 10 °C for 48 h. The black line represents the sample without additives. The blue line and the brown line represent the samples in the presence of PNAG-\textit{g}-COOH-\textit{b}-PNOG and PNAG-\textit{g}-NH\textsubscript{2}-\textit{b}-PNOG, respectively. The red line and the green line represent the samples in the presence of the star-like assemblies and the nanosheets from PEG-\textit{b}-PNOG.
Figure S27 CD spectra of the thaumatin solution. The black line represents the sample without additives. The blue line and the brown line represent the samples in the presence of PNAG-g-COOH-b-PNOG and PNAG-g-NH$_2$-b-PNOG, respectively. The red line represents the star-like assemblies from PEG-b-PNOG.
Figure S28. Photographs of the concanavalin A crystals crystallized at 18 °C for 72 h in the absence (a), and presence of (b) 0.5 mg/mL PNAG-\(g\)-COOH-\(b\)-PNOG and (c) 0.5 mg/mL PNAG-\(g\)-NH\(_2\)-\(b\)-PNOG, respectively.

![Photographs of the concanavalin A crystals](image)

Figure S29. Photographs of the bovine insulin crystals crystallized at 18 °C for 72 h in the absence, (a) and presence of (b) 0.5 mg/mL PNAG-\(g\)-COOH-\(b\)-PNOG and (c) 0.5 mg/mL PNAG-\(g\)-NH\(_2\)-\(b\)-PNOG, respectively.

![Photographs of the bovine insulin crystals](image)
Figure S30. UV spectra of (a) the concanavalin A and (b) the bovine insulin solution. The black line represents the sample without additives. The blue line and the brown line represent the samples in the presence of PNAG-\(g\)-COOH-\(b\)-PNOG and PNAG-\(g\)-NH\(_2\)-\(b\)-PNOG, respectively.

Figure S31. (a) Concanavalin A crystal percentage over a period of 2 days and (b) the bovine insulin crystal percentage over a period of 3 days. The black line represents the sample without additives. The red line and the blue line represent the samples in the presence of PNAG-\(g\)-COOH-\(b\)-PNOG and PNAG-\(g\)-NH\(_2\)-\(b\)-PNOG, respectively.
Figure S32. Crystallization success rate of the concanavalin A with (a) PNAG-\(g\)-NH\(_2\)-\(b\)-PNOG and (b) PNAG-\(g\)-COOH-\(b\)-PNOG with different concentrations at 18 °C versus incubation time.

Figure S33. Crystallization success rate of the bovine insulin with (a) PNAG-\(g\)-NH\(_2\)-\(b\)-PNOG and (b) PNAG-\(g\)-COOH-\(b\)-PNOG with different concentrations at 18 °C versus incubation time.
Figure S34. FTIR spectra of (a) the concanavalin A crystals grown at 18 °C for 48 h and (b) the bovine insulin crystals grown at 18 °C for 72 h. The black line represents the sample without additives. The blue line and the brown line represent the samples in the presence of PNAG-g-COOH-b-PNOG and PNAG-g-NH$_2$-b-PNOG, respectively.
Figure S35. CD spectra of (a) the concanavalin (b) the bovine insulin solution. The black line represents the sample without additives. The blue line and the brown line represent the samples in the presence of PNAG-\textit{g}-COOH-\textit{b}-PNOG and PNAG-\textit{g}-NH\textsubscript{2}-\textit{b}-PNOG, respectively.